Regulation of human mesothelial cell differentiation: opposing roles of retinoids and epidermal growth factor in the expression of intermediate filament proteins
نویسندگان
چکیده
We report here the discovery that retinoids are potent regulators of epithelial morphology and keratin expression in cultured human mesothelial cells. When LP-9 cells are cultured in medium supplemented with vitamin A-depleted serum, they grow with an extreme spindle-shaped morphology and synthesize abundant levels of vimentin, but very little keratin. When retinoic acid is added to the medium at 1 X 10(-8) to 1 X 10(-6) M, keratin synthesis is increased, vimentin synthesis is decreased, and the cells assume an epithelioid morphology. Keratin synthesis, but not epithelioid morphology, seems to be dependent on cell density as well: even when vitamin A is present, sparse cultures cannot fully maintain keratin synthesis. In contrast, epidermal growth factor (EGF) acts in an antagonistic fashion to suppress both keratin synthesis and epithelial morphology. The effects of vitamin A, EGF, and cell shape on intermediate filament (IF) expression seem to occur in a growth-independent manner, and they appear to be at the level of transcription or mRNA stability. Even so, their effects on IF expression do not appear to be rapid ones, and hence it is unlikely that these agents interact directly at the gene level to cause changes in IF gene expression.
منابع مشابه
Altered Expression of Epidermal Growth Factor Receptor (EGFR) in Glioma
EGFR is a key molecule in cancer cells. EGFR signaling was shown to promote tumor cell proliferation and survival, invasion and angiogenesis and mediate resistance to treatment, including ionizing radiation in preclinical models. We extracted proteins from astrocytoma (III and IV) oligodendroglioma(IV) tumors and normal brain tissues and then evaluated the protein purity by Bradford test ...
متن کاملA Novel Vector for Expression/Secretion of Properly Folded Eukaryotic Proteins: a Comparative Study on Cytoplasmic and Periplasmic Expression of Human Epidermal Growth Factor in E. coli
Expression of eukaryotic proteins in E. coli often results in their aggregation. Proper folding and solubility of therapeutical proteins are the pre-requisite for their bioactivity. This is not achieved in cytoplasmic expression in E. coli because of the absence of disulfide bonds formation. A novel expression/secretion vector was constructed which exploited β-lactamase signal sequence to trans...
متن کاملCo-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli
Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....
متن کاملRunx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells
Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...
متن کاملRunx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells
Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 105 شماره
صفحات -
تاریخ انتشار 1987